3.1.82 \(\int \frac {\sqrt {a+b x+c x^2}}{x^2 (d-f x^2)} \, dx\)

Optimal. Leaf size=286 \[ \frac {\sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d} \tanh ^{-1}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 d^{3/2}}+\frac {\sqrt {a f+b \sqrt {d} \sqrt {f}+c d} \tanh ^{-1}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 d^{3/2}}-\frac {\sqrt {a+b x+c x^2}}{d x}-\frac {b \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {a} d} \]

________________________________________________________________________________________

Rubi [A]  time = 0.71, antiderivative size = 286, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 8, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {6725, 732, 843, 621, 206, 724, 990, 1033} \begin {gather*} \frac {\sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d} \tanh ^{-1}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 d^{3/2}}+\frac {\sqrt {a f+b \sqrt {d} \sqrt {f}+c d} \tanh ^{-1}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 d^{3/2}}-\frac {\sqrt {a+b x+c x^2}}{d x}-\frac {b \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {a} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x + c*x^2]/(x^2*(d - f*x^2)),x]

[Out]

-(Sqrt[a + b*x + c*x^2]/(d*x)) - (b*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^2])])/(2*Sqrt[a]*d) + (S
qrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d
 - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*d^(3/2)) + (Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*ArcTan
h[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x
+ c*x^2])])/(2*d^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[p/(e*(m + 1)), Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)^
(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ
[2*c*d - b*e, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m + 2*p + 1, 0] && IntQua
draticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 990

Int[Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]/((d_) + (f_.)*(x_)^2), x_Symbol] :> Dist[c/f, Int[1/Sqrt[a + b*x +
c*x^2], x], x] - Dist[1/f, Int[(c*d - a*f - b*f*x)/(Sqrt[a + b*x + c*x^2]*(d + f*x^2)), x], x] /; FreeQ[{a, b,
 c, d, f}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1033

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[-(a*c), 2]}, Dist[h/2 + (c*g)/(2*q), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - (c*g)
/(2*q), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[-(a*c)]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x+c x^2}}{x^2 \left (d-f x^2\right )} \, dx &=\int \left (\frac {\sqrt {a+b x+c x^2}}{d x^2}+\frac {f \sqrt {a+b x+c x^2}}{d \left (d-f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {\sqrt {a+b x+c x^2}}{x^2} \, dx}{d}+\frac {f \int \frac {\sqrt {a+b x+c x^2}}{d-f x^2} \, dx}{d}\\ &=-\frac {\sqrt {a+b x+c x^2}}{d x}+\frac {\int \frac {b+2 c x}{x \sqrt {a+b x+c x^2}} \, dx}{2 d}+\frac {\int \frac {c d+a f+b f x}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx}{d}-\frac {c \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{d}\\ &=-\frac {\sqrt {a+b x+c x^2}}{d x}+\frac {b \int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx}{2 d}+\frac {c \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{d}-\frac {(2 c) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{d}-\frac {\left (\sqrt {f} \left (c d-b \sqrt {d} \sqrt {f}+a f\right )\right ) \int \frac {1}{\left (-\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 d^{3/2}}+\frac {\left (\sqrt {f} \left (c d+b \sqrt {d} \sqrt {f}+a f\right )\right ) \int \frac {1}{\left (\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 d^{3/2}}\\ &=-\frac {\sqrt {a+b x+c x^2}}{d x}-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{d}-\frac {b \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x}{\sqrt {a+b x+c x^2}}\right )}{d}+\frac {(2 c) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{d}+\frac {\left (\sqrt {f} \left (c d-b \sqrt {d} \sqrt {f}+a f\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 c d f-4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {b \sqrt {d} \sqrt {f}-2 a f-\left (-2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d^{3/2}}-\frac {\left (\sqrt {f} \left (c d+b \sqrt {d} \sqrt {f}+a f\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 c d f+4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {-b \sqrt {d} \sqrt {f}-2 a f-\left (2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{d^{3/2}}\\ &=-\frac {\sqrt {a+b x+c x^2}}{d x}-\frac {b \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {a} d}+\frac {\sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d^{3/2}}+\frac {\sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.43, size = 275, normalized size = 0.96 \begin {gather*} \frac {\sqrt {a f+b \sqrt {d} \sqrt {f}+c d} \tanh ^{-1}\left (\frac {2 a \sqrt {f}+b \sqrt {d}+b \sqrt {f} x+2 c \sqrt {d} x}{2 \sqrt {a+x (b+c x)} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )+\sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d} \tanh ^{-1}\left (\frac {-2 a \sqrt {f}+b \left (\sqrt {d}-\sqrt {f} x\right )+2 c \sqrt {d} x}{2 \sqrt {a+x (b+c x)} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )-\frac {2 \sqrt {d} \sqrt {a+x (b+c x)}}{x}-\frac {b \sqrt {d} \tanh ^{-1}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+x (b+c x)}}\right )}{\sqrt {a}}}{2 d^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x + c*x^2]/(x^2*(d - f*x^2)),x]

[Out]

((-2*Sqrt[d]*Sqrt[a + x*(b + c*x)])/x - (b*Sqrt[d]*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + x*(b + c*x)])])/Sqr
t[a] + Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + 2*c*Sqrt[d]*x + b*Sqrt[f]*x)/(2*
Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + x*(b + c*x)])] + Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*ArcTanh[(-2*
a*Sqrt[f] + 2*c*Sqrt[d]*x + b*(Sqrt[d] - Sqrt[f]*x))/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + x*(b + c*
x)])])/(2*d^(3/2))

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 0.53, size = 299, normalized size = 1.05 \begin {gather*} -\frac {\text {RootSum}\left [\text {$\#$1}^4 (-f)+2 \text {$\#$1}^2 a f+4 \text {$\#$1}^2 c d-4 \text {$\#$1} b \sqrt {c} d-a^2 f+b^2 d\&,\frac {\text {$\#$1}^2 b f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-2 \text {$\#$1} c^{3/2} d \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )+b c d \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-2 \text {$\#$1} a \sqrt {c} f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )}{\text {$\#$1}^3 f-\text {$\#$1} a f-2 \text {$\#$1} c d+b \sqrt {c} d}\&\right ]}{2 d}-\frac {\sqrt {a+b x+c x^2}}{d x}+\frac {b \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a}}-\frac {\sqrt {a+b x+c x^2}}{\sqrt {a}}\right )}{\sqrt {a} d} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[a + b*x + c*x^2]/(x^2*(d - f*x^2)),x]

[Out]

-(Sqrt[a + b*x + c*x^2]/(d*x)) + (b*ArcTanh[(Sqrt[c]*x)/Sqrt[a] - Sqrt[a + b*x + c*x^2]/Sqrt[a]])/(Sqrt[a]*d)
- RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1 + 4*c*d*#1^2 + 2*a*f*#1^2 - f*#1^4 & , (b*c*d*Log[-(Sqrt[c]*x) + Sq
rt[a + b*x + c*x^2] - #1] - 2*c^(3/2)*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 - 2*a*Sqrt[c]*f*Log[
-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 + b*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2)/(b*Sq
rt[c]*d - 2*c*d*#1 - a*f*#1 + f*#1^3) & ]/(2*d)

________________________________________________________________________________________

fricas [B]  time = 24.59, size = 1094, normalized size = 3.83 \begin {gather*} \left [\frac {a d x \sqrt {\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} + c d + a f}{d^{3}}} \log \left (\frac {2 \, b c x + 2 \, \sqrt {c x^{2} + b x + a} b d \sqrt {\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} + c d + a f}{d^{3}}} + b^{2} + {\left (b d^{2} x + 2 \, a d^{2}\right )} \sqrt {\frac {b^{2} f}{d^{5}}}}{x}\right ) - a d x \sqrt {\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} + c d + a f}{d^{3}}} \log \left (\frac {2 \, b c x - 2 \, \sqrt {c x^{2} + b x + a} b d \sqrt {\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} + c d + a f}{d^{3}}} + b^{2} + {\left (b d^{2} x + 2 \, a d^{2}\right )} \sqrt {\frac {b^{2} f}{d^{5}}}}{x}\right ) + a d x \sqrt {-\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} - c d - a f}{d^{3}}} \log \left (\frac {2 \, b c x + 2 \, \sqrt {c x^{2} + b x + a} b d \sqrt {-\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} - c d - a f}{d^{3}}} + b^{2} - {\left (b d^{2} x + 2 \, a d^{2}\right )} \sqrt {\frac {b^{2} f}{d^{5}}}}{x}\right ) - a d x \sqrt {-\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} - c d - a f}{d^{3}}} \log \left (\frac {2 \, b c x - 2 \, \sqrt {c x^{2} + b x + a} b d \sqrt {-\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} - c d - a f}{d^{3}}} + b^{2} - {\left (b d^{2} x + 2 \, a d^{2}\right )} \sqrt {\frac {b^{2} f}{d^{5}}}}{x}\right ) + \sqrt {a} b x \log \left (-\frac {8 \, a b x + {\left (b^{2} + 4 \, a c\right )} x^{2} - 4 \, \sqrt {c x^{2} + b x + a} {\left (b x + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{2}}\right ) - 4 \, \sqrt {c x^{2} + b x + a} a}{4 \, a d x}, \frac {a d x \sqrt {\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} + c d + a f}{d^{3}}} \log \left (\frac {2 \, b c x + 2 \, \sqrt {c x^{2} + b x + a} b d \sqrt {\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} + c d + a f}{d^{3}}} + b^{2} + {\left (b d^{2} x + 2 \, a d^{2}\right )} \sqrt {\frac {b^{2} f}{d^{5}}}}{x}\right ) - a d x \sqrt {\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} + c d + a f}{d^{3}}} \log \left (\frac {2 \, b c x - 2 \, \sqrt {c x^{2} + b x + a} b d \sqrt {\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} + c d + a f}{d^{3}}} + b^{2} + {\left (b d^{2} x + 2 \, a d^{2}\right )} \sqrt {\frac {b^{2} f}{d^{5}}}}{x}\right ) + a d x \sqrt {-\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} - c d - a f}{d^{3}}} \log \left (\frac {2 \, b c x + 2 \, \sqrt {c x^{2} + b x + a} b d \sqrt {-\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} - c d - a f}{d^{3}}} + b^{2} - {\left (b d^{2} x + 2 \, a d^{2}\right )} \sqrt {\frac {b^{2} f}{d^{5}}}}{x}\right ) - a d x \sqrt {-\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} - c d - a f}{d^{3}}} \log \left (\frac {2 \, b c x - 2 \, \sqrt {c x^{2} + b x + a} b d \sqrt {-\frac {d^{3} \sqrt {\frac {b^{2} f}{d^{5}}} - c d - a f}{d^{3}}} + b^{2} - {\left (b d^{2} x + 2 \, a d^{2}\right )} \sqrt {\frac {b^{2} f}{d^{5}}}}{x}\right ) + 2 \, \sqrt {-a} b x \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (b x + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{2} + a b x + a^{2}\right )}}\right ) - 4 \, \sqrt {c x^{2} + b x + a} a}{4 \, a d x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/x^2/(-f*x^2+d),x, algorithm="fricas")

[Out]

[1/4*(a*d*x*sqrt((d^3*sqrt(b^2*f/d^5) + c*d + a*f)/d^3)*log((2*b*c*x + 2*sqrt(c*x^2 + b*x + a)*b*d*sqrt((d^3*s
qrt(b^2*f/d^5) + c*d + a*f)/d^3) + b^2 + (b*d^2*x + 2*a*d^2)*sqrt(b^2*f/d^5))/x) - a*d*x*sqrt((d^3*sqrt(b^2*f/
d^5) + c*d + a*f)/d^3)*log((2*b*c*x - 2*sqrt(c*x^2 + b*x + a)*b*d*sqrt((d^3*sqrt(b^2*f/d^5) + c*d + a*f)/d^3)
+ b^2 + (b*d^2*x + 2*a*d^2)*sqrt(b^2*f/d^5))/x) + a*d*x*sqrt(-(d^3*sqrt(b^2*f/d^5) - c*d - a*f)/d^3)*log((2*b*
c*x + 2*sqrt(c*x^2 + b*x + a)*b*d*sqrt(-(d^3*sqrt(b^2*f/d^5) - c*d - a*f)/d^3) + b^2 - (b*d^2*x + 2*a*d^2)*sqr
t(b^2*f/d^5))/x) - a*d*x*sqrt(-(d^3*sqrt(b^2*f/d^5) - c*d - a*f)/d^3)*log((2*b*c*x - 2*sqrt(c*x^2 + b*x + a)*b
*d*sqrt(-(d^3*sqrt(b^2*f/d^5) - c*d - a*f)/d^3) + b^2 - (b*d^2*x + 2*a*d^2)*sqrt(b^2*f/d^5))/x) + sqrt(a)*b*x*
log(-(8*a*b*x + (b^2 + 4*a*c)*x^2 - 4*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(a) + 8*a^2)/x^2) - 4*sqrt(c*x^2 +
 b*x + a)*a)/(a*d*x), 1/4*(a*d*x*sqrt((d^3*sqrt(b^2*f/d^5) + c*d + a*f)/d^3)*log((2*b*c*x + 2*sqrt(c*x^2 + b*x
 + a)*b*d*sqrt((d^3*sqrt(b^2*f/d^5) + c*d + a*f)/d^3) + b^2 + (b*d^2*x + 2*a*d^2)*sqrt(b^2*f/d^5))/x) - a*d*x*
sqrt((d^3*sqrt(b^2*f/d^5) + c*d + a*f)/d^3)*log((2*b*c*x - 2*sqrt(c*x^2 + b*x + a)*b*d*sqrt((d^3*sqrt(b^2*f/d^
5) + c*d + a*f)/d^3) + b^2 + (b*d^2*x + 2*a*d^2)*sqrt(b^2*f/d^5))/x) + a*d*x*sqrt(-(d^3*sqrt(b^2*f/d^5) - c*d
- a*f)/d^3)*log((2*b*c*x + 2*sqrt(c*x^2 + b*x + a)*b*d*sqrt(-(d^3*sqrt(b^2*f/d^5) - c*d - a*f)/d^3) + b^2 - (b
*d^2*x + 2*a*d^2)*sqrt(b^2*f/d^5))/x) - a*d*x*sqrt(-(d^3*sqrt(b^2*f/d^5) - c*d - a*f)/d^3)*log((2*b*c*x - 2*sq
rt(c*x^2 + b*x + a)*b*d*sqrt(-(d^3*sqrt(b^2*f/d^5) - c*d - a*f)/d^3) + b^2 - (b*d^2*x + 2*a*d^2)*sqrt(b^2*f/d^
5))/x) + 2*sqrt(-a)*b*x*arctan(1/2*sqrt(c*x^2 + b*x + a)*(b*x + 2*a)*sqrt(-a)/(a*c*x^2 + a*b*x + a^2)) - 4*sqr
t(c*x^2 + b*x + a)*a)/(a*d*x)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/x^2/(-f*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Eval
uation time: 0.87sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.02, size = 1819, normalized size = 6.36

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(1/2)/x^2/(-f*x^2+d),x)

[Out]

1/2*f/d/(d*f)^(1/2)*((x+(d*f)^(1/2)/f)^2*c+(b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+(a*f+c*d-(d*f)^(1/2)*b)/f
)^(1/2)-1/2/d*ln(((x+(d*f)^(1/2)/f)*c+1/2*(b*f-2*(d*f)^(1/2)*c)/f)/c^(1/2)+((x+(d*f)^(1/2)/f)^2*c+(b*f-2*(d*f)
^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+(a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2))*c^(1/2)+1/4*f/d/(d*f)^(1/2)*ln(((x+(d*f)^(1/2)
/f)*c+1/2*(b*f-2*(d*f)^(1/2)*c)/f)/c^(1/2)+((x+(d*f)^(1/2)/f)^2*c+(b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+(a
*f+c*d-(d*f)^(1/2)*b)/f)^(1/2))/c^(1/2)*b+1/2/d/((a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2)*ln((2*(a*f+c*d-(d*f)^(1/2)*b
)/f+(b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+2*((a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2)*((x+(d*f)^(1/2)/f)^2*c+(b*f-
2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+(a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2))/(x+(d*f)^(1/2)/f))*b-1/2*f/d/(d*f)^(1/2
)/((a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2)*ln((2*(a*f+c*d-(d*f)^(1/2)*b)/f+(b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+
2*((a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2)*((x+(d*f)^(1/2)/f)^2*c+(b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+(a*f+c*d-
(d*f)^(1/2)*b)/f)^(1/2))/(x+(d*f)^(1/2)/f))*a-1/2/(d*f)^(1/2)/((a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2)*ln((2*(a*f+c*d
-(d*f)^(1/2)*b)/f+(b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+2*((a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2)*((x+(d*f)^(1/2
)/f)^2*c+(b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+(a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2))/(x+(d*f)^(1/2)/f))*c-1/d/
a/x*(c*x^2+b*x+a)^(3/2)+1/d*b/a*(c*x^2+b*x+a)^(1/2)-1/2/d*b/a^(1/2)*ln((b*x+2*a+2*(c*x^2+b*x+a)^(1/2)*a^(1/2))
/x)+1/d*c/a*(c*x^2+b*x+a)^(1/2)*x+1/d*c^(1/2)*ln((c*x+1/2*b)/c^(1/2)+(c*x^2+b*x+a)^(1/2))-1/2*f/d/(d*f)^(1/2)*
((x-(d*f)^(1/2)/f)^2*c+(b*f+2*(d*f)^(1/2)*c)*(x-(d*f)^(1/2)/f)/f+(a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2)-1/2/d*ln(((x
-(d*f)^(1/2)/f)*c+1/2*(b*f+2*(d*f)^(1/2)*c)/f)/c^(1/2)+((x-(d*f)^(1/2)/f)^2*c+(b*f+2*(d*f)^(1/2)*c)*(x-(d*f)^(
1/2)/f)/f+(a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2))*c^(1/2)-1/4*f/d/(d*f)^(1/2)*ln(((x-(d*f)^(1/2)/f)*c+1/2*(b*f+2*(d*
f)^(1/2)*c)/f)/c^(1/2)+((x-(d*f)^(1/2)/f)^2*c+(b*f+2*(d*f)^(1/2)*c)*(x-(d*f)^(1/2)/f)/f+(a*f+c*d+(d*f)^(1/2)*b
)/f)^(1/2))/c^(1/2)*b+1/2/d/((a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2)*ln((2*(a*f+c*d+(d*f)^(1/2)*b)/f+(b*f+2*(d*f)^(1/
2)*c)*(x-(d*f)^(1/2)/f)/f+2*((a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(b*f+2*(d*f)^(1/2)*c)*(x-
(d*f)^(1/2)/f)/f+(a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2))/(x-(d*f)^(1/2)/f))*b+1/2*f/d/(d*f)^(1/2)/((a*f+c*d+(d*f)^(1
/2)*b)/f)^(1/2)*ln((2*(a*f+c*d+(d*f)^(1/2)*b)/f+(b*f+2*(d*f)^(1/2)*c)*(x-(d*f)^(1/2)/f)/f+2*((a*f+c*d+(d*f)^(1
/2)*b)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(b*f+2*(d*f)^(1/2)*c)*(x-(d*f)^(1/2)/f)/f+(a*f+c*d+(d*f)^(1/2)*b)/f)^(1
/2))/(x-(d*f)^(1/2)/f))*a+1/2/(d*f)^(1/2)/((a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2)*ln((2*(a*f+c*d+(d*f)^(1/2)*b)/f+(b
*f+2*(d*f)^(1/2)*c)*(x-(d*f)^(1/2)/f)/f+2*((a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(b*f+2*(d*f
)^(1/2)*c)*(x-(d*f)^(1/2)/f)/f+(a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2))/(x-(d*f)^(1/2)/f))*c

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {\sqrt {c x^{2} + b x + a}}{{\left (f x^{2} - d\right )} x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/x^2/(-f*x^2+d),x, algorithm="maxima")

[Out]

-integrate(sqrt(c*x^2 + b*x + a)/((f*x^2 - d)*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {c\,x^2+b\,x+a}}{x^2\,\left (d-f\,x^2\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x + c*x^2)^(1/2)/(x^2*(d - f*x^2)),x)

[Out]

int((a + b*x + c*x^2)^(1/2)/(x^2*(d - f*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {\sqrt {a + b x + c x^{2}}}{- d x^{2} + f x^{4}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(1/2)/x**2/(-f*x**2+d),x)

[Out]

-Integral(sqrt(a + b*x + c*x**2)/(-d*x**2 + f*x**4), x)

________________________________________________________________________________________